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Abstract— This study investigates convolutional neural
networks, specifically the U-Net architecture, for the automated
detection of irregular airstrips in the Amazon rainforest using
Synthetic Aperture Radar (SAR) imagery from ICEYE satellites
operating in the X-band. Detecting these airstrips is strategic
for combating illicit activities and protecting the environment.
SAR imagery is particularly effective in the Amazon, as it
can penetrate cloud coverage, which is common in the region.
A comprehensive pipeline was developed for data preparation,
model training, and evaluation, utilizing the airstrips cataloged
by the MapBiomas project for reference. Experiments were
conducted by varying both the size of the input images and the
balance of the training dataset. Results indicated that even with
a limited number of images, the U-Net architecture can generate
consistent outcomes. The study supports the development of
operational solutions for the automated monitoring of irregular
airstrips in the Amazon region.

Keywords— Synthetic Aperture Radar, automatic detection,
Deep Learning, airstrips.

I. INTRODUCTION

The detection of airstrips in the Amazon region is a task of
growing significance for government agencies and institutions
focused on environmental protection [1], [2]. These structures,
often constructed secretly, are used for the illegal transpor-
tation of goods and the unauthorized exploitation of natural
resources [3], [4]. Systematic monitoring of these airstrips can
help combat illicit activities and protect sensitive areas.

The vast expanse of the Amazon region and its challen-
ging accessibility make field-based monitoring difficult and
expensive. In this context, spaceborne remote sensing is vital
in collecting information to support government actions [5].
However, the Amazon region also presents challenges for
these systems. Its climate, characterized by high humidity
and temperatures, favors cloud formation, which obstructs the
acquisition of optical images for much of the year [6].

To address this issue, the Brazilian Air Force acquired
ICEYE satellites through the Lessonia Project to capture
Synthetic Aperture Radar (SAR) images of the Earth’s surface
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[7]. SAR technology allows for image acquisition regardless
of cloud cover or lighting conditions, which is especially
beneficial in the Amazon region [8].

Once the SAR images are acquired, the next major chal-
lenge lies in processing this vast volume of data to identify
airstrips effectively. The complexity arises from the need to
distinguish small, often narrow linear structures in heteroge-
neous landscapes, such as forests, rivers, and rural clearings.
In recent years, numerous studies have demonstrated the
potential of SAR imagery in the automatic detection of diverse
targets, including vehicles, ships, and buildings, by applying
advanced image processing and Artificial Intelligence (AI)
techniques [9], [10], [11]. These methods leverage the inherent
advantages of SAR, such as its robustness to adverse weather
and lighting conditions, enabling consistent surveillance in
environments like the Amazon, where cloud cover and limited
ground access hinder traditional monitoring. Convolutional
Neural Networks (CNNs), in particular, have shown high
effectiveness in learning spatial and textural patterns from
SAR data, making them suitable for segmentation and clas-
sification tasks involving man-made infrastructure embedded
in complex natural scenes [12].

Research on the detection of airstrips remains relatively
scarce in the existing literature. Recent studies have em-
ployed Sentinel-1 SAR data for this purpose, leveraging
its free availability and extensive coverage [13]. However,
these studies often encounter challenges due to the sensor’s
spatial resolution, which is approximately 10 meters. This
resolution particularly complicates the identification of narrow
and elongated structures, such as irregular airstrips, especially
in densely vegetated or partially degraded regions. In many
cases, airstrips can be narrower than 20 meters, further com-
plicating their detection at this resolution [14]. For instance,
[15] proposed an improved algorithm for detecting airstrips in
the Amazon rainforest using multi-stage filtering and object
analysis in optical images, while [13] applied a YOLOv8-
based deep learning approach to Sentinel-1 imagery for the
same task. While these studies make significant contributions,
they remain preliminary. Additionally, those utilizing SAR
images depend on medium spatial resolution data, which
restricts the accuracy and reliability of the detections. This
gap presents a significant opportunity to advance the state of
the art through the utilization of high-resolution SAR imagery,
such as that provided by ICEYE satellites. By leveraging
finer spatial details and the capabilities of convolutional neural
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networks, we can enhance both the sensitivity and precision
of airstrip detection in complex and remote environments like
the Amazon.

This paper aims to fill gaps identified in previous research
by examining the characteristics of images that exhibit poor
detection performance, primarily focusing on the Intersection
over Union (IoU) metric. Additionally, we will describe our
efforts to enhance the masking process used for generating
ground truth data. Finally, we will analyze key hyperpara-
meters that seem to be intrinsically connected to detection
performance, including the balance of training data and image
resolution.

This paper is structured as follows: Section II describes the
methodology, the dataset, along with the preparation process
for images and segmentation masks and the network architec-
ture used; Section III presents the results and corresponding
analyses; finally, Section IV discusses the conclusions and
directions for future work.

II. METHODOLOGY

This section outlines the methodological approach deve-
loped for detecting airstrips in the Amazon using X-band
SAR imagery from satellites combined with Deep Learning
techniques. It begins with a description of the pre-processing
stage, primarily focusing on the construction of the dataset.
This includes the selection and annotation of images, as well
as the generation of segmentation masks. Additionally, the
section provides an overview of the U-Net convolutional neu-
ral network architecture along with details on its implementa-
tion. Finally, the experimental setup is discussed, covering the
image processing stage, training strategies, evaluation metrics,
and the criteria used to assess the model’s performance.

A. Dataset

The dataset used in this study consists of SAR images
collected by ICEYE satellites and supplied by the Institute for
Advanced Studies (IEAv). This research institution, affiliated
with the Brazilian Air Force, plays a strategic role in the
development of aerospace technologies and remote sensing
capabilities. The ICEYE satellite operates in the X-band and
generates VV-polarized SAR images in various acquisition
modes, with spatial resolutions ranging from 0.25m to 15m
[16]. For this work, images captured in Stripmap mode with a
spatial resolution of 3 meters per pixel were chosen to create
the dataset. The selected images were acquired during the
years 2022 and 2023.

To complement the SAR imagery selected for this study,
reference data on known airstrip locations were required to
support supervised learning and ground truth generation. For
this purpose, georeferenced information on airstrips in the
Amazon region was obtained from the MapBiomas project
published in 2023 [17].

This study analyzed optical imagery of the Amazon region
from the year 2021 to identify and catalog airstrips and
compare them with official Brazilian government records. A
total of 2,869 airstrips were identified in the area, with 1,205
(42%) registered with the National Civil Aviation Agency and
1,664 (58%) unregistered. Each airstrip was cataloged with
various attributes; for this study, the unique identifier (ID) and

geographic coordinates of a reference point on each airstrip
were utilized.

To ensure spatial alignment between the reference data and
the radar imagery, a cross-referencing step was performed
between the airstrip catalog and the SAR dataset. This step
was essential to isolate only those instances where the an-
notated airstrips were fully covered within the available SAR
scenes, enabling the extraction of consistent and valid samples
for further analysis.

After cross-referencing the airstrip database with the avai-
lable SAR images, we retained only those airstrips that
appeared in at least one SAR image. As a result, only 244
airstrips remained, representing approximately 8.5% of the
total cataloged airstrips. Fig. 1 displays a map of the Amazon
region, with blue rectangles representing the SAR image areas
and orange circles representing the cataloged airstrips used in
this study.

Fig. 1. Map of the Amazon region with SAR image contour and airstrips.

For each airstrip, a 2 × 2 km square area centered on
the reference coordinate was extracted from the original SAR
image, isolating the airstrip and its surroundings as a sample
for neural network training. The 2km dimension was selected
based on the typical length of airstrips observed in the region,
which are generally shorter than 2 km, ensuring that the entire
structure is captured within the subset image.

To train the segmentation model, each SAR image subset
required a corresponding annotation indicating the airstrip
location. To ensure spatial alignment between the SAR data
and the optical references, a coregistration procedure was
performed to verify the alignment of the masks relative to
the SAR image geometry. Binary masks were then created
with polygons covering the entire surface of each airstrip.
Fig. 2 displays an optical image with a red square indicating
the subset image boundaries and a green rectangle outlining
the airstrip.

To ensure the quality and relevance of the training data,
additional criteria were applied during sample selection. Only
image patches that fully contained at least one annotated
airstrip were retained. This selection aimed to preserve the
distinctive characteristics of airstrips, which exhibit clearly
defined start and end points, making it possible to differentiate
them from other linear structures, such as roads and rivers.

As a result of this process, the final dataset included 640
images corresponding to 244 distinct airstrips. The number of
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Fig. 2. Example of optical image with airstrip polygon.

samples per airstrip varied from 1 to 15, with 123 airstrips
represented by only one sample and one airstrip represented
by 15 samples. Fig. 3 shows the distribution of the number
of available images per airstrip.

Fig. 3. Number of images per airstrip ID.

From the total set, 12 airstrips were selected to form a
control group for qualitative monitoring of the network’s
performance. These airstrips were chosen based on visual
criteria, focusing on airstrips that were distinguishable from
the surrounding terrain. This approach was intended to ensure
consistent and interpretable evaluations of the model’s pre-
dictions. The remaining airstrips were divided into training,
validation, and test groups, with a distribution of 70%, 20%,
and 10%, respectively, as outlined in [18]. To prevent data
leakage between groups, only airstrips represented by a single
image were included in the validation, test, and control sets.

B. Neural Network Architecture: U-Net

The architecture employed is based on U-Net, a convo-
lutional neural network widely used for image segmentation
tasks [19]. It is recognized for its capacity to produce precise
segmentations, even with a limited amount of labeled data.

The U-Net architecture features a U-shaped design, com-
prising two primary components: the encoder and the decoder.
The encoder conducts hierarchical feature extraction through
convolutional and pooling operations, gradually decreasing
the spatial resolution of the representations. The decoder

reconstructs the segmentation from the compressed represen-
tations by utilizing upsampling and convolutional layers to
restore the original spatial resolution.

A key element of U-Net is the use of skip connections
between corresponding layers of the encoder and decoder,
which facilitate the transfer of detailed spatial information
[19]. These connections are crucial for refining the edges and
contours of the segmented regions, as they allow the decoder
to recover spatial resolution and preserve fine structural details
lost during downsampling. This improved reconstruction of
the segmentation is particularly important for airstrip detection
[20], [21].

In this study, a U-Net version proposed in [14] was imple-
mented, adhering to the original structure presented in [19],
with modifications such as batch normalization and ReLU
activation following each convolutional layer.

The architecture consists of four encoder blocks, each
containing two convolutional layers with 3 × 3 kernels and
ReLU activation, followed by batch normalization. Each block
is followed by 2 × 2 max pooling, which reduces spatial re-
solution by a factor of 2 in each dimension and, consequently,
reduces the number of pixels per channel by 4, all the while
doubling the number of filters, beginning with 64 filters and
reaching 512. A transition block (bridge) with 1024 filters
connects the encoder and decoder, representing the network’s
deepest level and its most abstract data representation.

The decoder consists of four blocks. Each block begins
with an upsampling layer that utilizes transposed convolution,
which doubles the spatial resolution while halving the number
of filters. The upsampled feature map is concatenated with
the corresponding encoder output through skip connections,
allowing for the recovery of spatial information lost during
pooling. This is followed by two convolutional layers, each
accompanied by batch normalization and ReLU activation.

The output layer features a 1 × 1 convolution with softmax
activation, generating a segmentation map with two classes
per pixel: “target” and “background”. The choice of softmax
activation over sigmoid was made due to its slightly better
performance in a comparable segmentation task, as noted in
[14].

C. Experimental Setup

The configuration adopted for the experiments was based
on parameters previously validated in related work [14],
including the network architecture, batch size, optimizer, and
loss function. A batch size of 8 images was used to balance
memory efficiency and training stability, while the Adam
optimizer was selected for its robustness and widespread
adoption in image segmentation tasks. The Dice Loss function
was chosen due to its effectiveness in handling class imba-
lance, a common challenge in semantic segmentation [22].
The number of training epochs was set to 200, based on
preliminary experiments which indicated that the loss function
on the validation set typically stabilized around epoch 100.

The evaluation metric used in this study is Intersection
over Union (IoU). The IoU metric is particularly effective
for assessing pixel-wise detection performance, as it direc-
tly measures the overlap between the predicted mask and
the ground truth. Given the two-dimensional nature of the
segmentation problem, achieving a perfect match across an
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entire region can be inherently challenging, especially in
scenarios with complex backgrounds and subtle features of
the target. Therefore, pixel-level evaluation provides a more
realistic and equitable assessment of the model’s performance.
The intersection with ground truth pixels serves as a critical
indicator of detection quality, reflecting not only the presence
of the target but also the spatial accuracy of the segmented
regions.

The configurations for training and for performance valida-
tion are shown in Table I.

TABLE I

TRAINING CONFIGURATION DETAILS

Parameter Value
Network architecture U-Net
Batch size 8 images
Number of epochs 200
Optimizer Adam
Loss function Dice Loss
Metrics Intersection over Union (IoU)

Results were evaluated based on the Dice loss function
and the IoU metric on the test set, in addition to the number
of detections. The Dice loss used for training and testing is
defined as:

Lsoft-Dice(X,Y) := 1−
2

N∑
i=1

⟨Ŷi,Yi⟩+ ε

N∑
i=1

∥Ŷi∥1 +
N∑
i=1

∥Yi∥1 + ε

, (1)

where:
• Xi ∈ {0, . . . , 2δ − 1}H×W×C denote the i-th quantized

input image,
• Ŷi = fU-Net(Xi;θ) ∈ [0, 1]H×W denote the predicted

mask (before thresholding),
• Yi ∈ {0, 1}H×W denote the corresponding binary

ground-truth mask.

• ⟨Ŷi,Yi⟩ =
H∑

h=1

W∑
w=1

Ŷi(h,w)Yi(h,w) is the Frobenius

inner product (i.e., soft intersection),
• ∥·∥1 denotes the element-wise 1-norm (sum of all tensor

elements),
• ε > 0 is a small constant added for numerical stability

to avoid division by zero.
A valid detection was defined as an overlap of at least 30%

between the predicted area and the ground truth mask. The
30% overlap threshold was defined to favor the detection of
potential airstrips, even in cases of partial segmentation, since
in this application false positives are preferable to missed
detections, which could result in overlooking strategically
relevant targets in remote areas. Moreover, as demonstrated
in [14], the correct segmentation of even small sections of an
airstrip is often sufficient to enable its identification, given
their characteristic linear geometry and contextual cues in
the surrounding terrain. Fig. 4 illustrates an example of a
successful detection, with Fig. 4 (a) displaying the original
SAR image, 4 (b) the ground truth mask, and 4 (c) the
network’s predicted mask.

III. RESULTS AND DISCUSSION

Initially, experiments were conducted varying the image
resolution. The original images have a resolution of approxi-
mately 800 × 800 pixels; tests were performed using higher

Fig. 4. Example of a successful detection.

resolution (1024×1024) and lower resolutions (512 × 512 and
256 × 256). The images were converted to 8 bits, as shown by
[15], to reduce computational costs and enhance the contrast
between image elements.

The results indicated a small difference in performance
between the 256 and 512 pixel resolutions; however, the 1024
resolution resulted in significantly worse performance. As
shown in Table II, when using all available images, the 256
resolution yielded an average test loss of approximately 84%
and an IoU of 8%, while the 512 resolution resulted in an 83%
loss and a 6.5% IoU. The test with 1024 resolution presented
a 92% loss and 0% IoU. This loss of performance at higher
resolution may be attributed to the limited number of training
samples available, which can lead to overfitting or insufficient
generalization, as larger images introduce a higher number of
parameters and spatial variability, demanding more data to
train the model effectively.

TABLE II

COMPARISON OF RESULTS BY IMAGE RESOLUTION

Resolution (px) Test Loss Test IoU
256 0.8439245 0.0788340
512 0.8310944 0.0645017

1024 0.9189511 0.0000000

The imbalance in the number of samples per airstrip was
a concern throughout this study. The limited data volume
required a careful balance between maximizing the number
of images used and maintaining network performance.

To assess the impact of dataset imbalance, tests were
conducted using both the complete dataset and datasets with
the number of samples per airstrip limited to between 1 and
6 images. The results showed that, when using very few
images per airstrip, the network struggled to learn effectively,
resulting in random predictions. Fig. 5 presents the test loss
and IoU results for networks trained with different numbers of
samples per airstrip. All tests were performed at a resolution
of 256 × 256 pixels, selected based on previous experiments
that indicated slightly better performance at this resolution
compared to others, while also offering reduced computational
cost.

Limiting the training set to 6 images per airstrip produced
more accurate outcomes, with a loss of approximately 79%
and a 9.8% IoU, indicating that the network effectively learned
the characteristics of the target objects. Fig. 6 illustrates
an example of performance improvement as the number of
samples per airstrip changes. Fig. 6 (a) represents the ground
truth mask, while Fig. 6 (b) to (g) show predictions from
networks trained with sample limits from 1 to 6, respectively.
Fig. 6 (h) displays the prediction from the network trained
with the complete dataset. The test with the training group
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Fig. 5. Results with different limits on the number of samples per airstrip.

limited to 6 images per airstrip achieved better performance
than using the full dataset, with only 51 images discarded,
providing an appropriate balance between dataset balance and
total data volume.

Repeating the resolution variation test for datasets with
limited samples per airstrip, the results indicated that using
lower-resolution images is feasible without significant loss of
performance. This approach can be beneficial for reducing
computational costs and training time. The importance of
dataset balance became evident when, even with a small
dataset, limiting the number of images per target improved
the network’s final performance. A possible explanation for
this effect is that an excessive number of samples from a few
specific airstrips may cause the network to overfit to their
visual characteristics, reducing its ability to generalize to other
targets. By capping the number of samples per airstrip, the
training data becomes more evenly distributed across different
examples, promoting better feature diversity and enhancing
the network’s generalization capability. Finding this balance
point is crucial, especially when working with limited data.

An analysis of the prediction results reveals that the
network had difficulty segmenting airstrips located in areas
with low vegetation or deforested terrain. Figure 7 (a) shows
the original SAR image, where there is a noticeable low
contrast between the airstrip and its surroundings. In Figure
7 (c), which displays the mask predicted by the network, it
is clear that the predicted feature corresponds to the forest
edge near the airstrip rather than the actual target. This
suggests confusion between vegetation boundaries and linear
structures.

It is also important to note that the segmentation masks
were based on optical satellite imagery. Although a vi-
sual coregistration process was applied, minor misalignments
between the SAR and optical data may have contributed to
inaccuracies in labeling, especially in low-contrast or hetero-
geneous regions.

IV. CONCLUSION

The results presented in this study demonstrate the feasi-
bility of using the U-Net architecture for automatic detection
of airstrips in the Amazon region, using X-band SAR ima-
gery from satellites. Despite the limited number of available
images, satisfactory results were achieved, indicating that the
model can learn distinctive airstrip characteristics even in

Fig. 6. Ground Truth mask and comparison of network predictions with
different numbers of samples per airstrip.

Fig. 7. Example of an unsuccessful detection.

a data-scarce scenario. The use of lower-resolution images
proved to be a viable strategy, allowing for a reduction in
computational costs and training time without significantly
affecting network performance. Furthermore, the importance
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of a well-balanced training dataset became evident, as an
excess of samples from the same target adversely impacted
model performance. This study offers a practical and replica-
ble approach for monitoring airstrips in the Amazon rainforest
using SAR imagery, providing insights for future applications
in surveillance and environmental protection.

Future work may explore several directions:
• Assessing the impact of different SAR image pre-

processing techniques, including filters for speckle noise
reduction, to enhance segmentation accuracy.

• Exploring variations of the U-Net architecture and testing
other neural network architectures, such as YOLO and
U-Net++, among others.

• Investigating the combination of classical detectors (e.g.,
edge and line detectors) with neural networks to improve
detection robustness.

• Expanding the dataset to include images from various
sensors and acquisition conditions to evaluate the gene-
ralization capabilities of the model.

• Generating binary segmentation masks directly over SAR
images, rather than relying on optical references, to
improve spatial alignment and reduce annotation uncer-
tainty.

• Integrating the developed solution into an operational
system for continuous monitoring.
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